首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   646篇
  免费   33篇
  国内免费   4篇
  2024年   1篇
  2023年   14篇
  2022年   7篇
  2021年   33篇
  2020年   15篇
  2019年   25篇
  2018年   32篇
  2017年   16篇
  2016年   37篇
  2015年   30篇
  2014年   31篇
  2013年   47篇
  2012年   53篇
  2011年   64篇
  2010年   36篇
  2009年   31篇
  2008年   37篇
  2007年   29篇
  2006年   29篇
  2005年   25篇
  2004年   35篇
  2003年   23篇
  2002年   13篇
  2001年   3篇
  2000年   1篇
  1999年   4篇
  1998年   4篇
  1996年   1篇
  1992年   1篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
排序方式: 共有683条查询结果,搜索用时 406 毫秒
11.
International Journal of Biometeorology - Lying behavior is an important indicator of the cows’ welfare and health. In this study, we evaluate the effect of the physical environment on dairy...  相似文献   
12.
International Journal of Biometeorology - The aim of this study was to estimate, using data mining, which microclimate and behavioral variables affect the behavior of animals to seek shaded or...  相似文献   
13.
HSSP是用大豆密码子改造的10 kD玉米醇溶蛋白基因。在前期研究中,从获得的转基因大豆中筛选到1份单拷贝转基因材料GSDH5。该研究采用染色体步移法获取转基因大豆GSDH5的T-DNA插入位点的左边界旁侧序列,对获得的左边界旁侧序列进行分析,设计特异性引物,建立转基因大豆GSDH5特异性检测方法;采用Real-time PCR检测外源基因在转基因大豆不同组织部位(根、茎、叶、花和种子)中的表达量,采用RT-PCR和Western blot检测外源基因在转录和翻译水平上的遗传稳定性,并对转基因大豆GSDH5中的粗蛋白、含硫氨基酸含量及主要农艺性状进行测定分析,为培育高含硫氨基酸转基因大豆新品种奠定基础。结果表明:(1)分子鉴定显示,外源基因HSSP和筛选标记基因Bar成功整合到受体大豆‘东农50’基因组中,且以单拷贝的形式整合到大豆基因组中。(2)HSSP基因成功插入到大豆基因组1号染色体非编码区52 873 883 bp处。(3)HSSP基因在转基因大豆GSDH5的种子中特异性表达,且在T_2~T_4代转基因大豆中能够稳定遗传并表达。(4)‘东农50’粗蛋白含量在41.53%~43.32%之间,GSDH5粗蛋白含量在40.18%~43.03%之间,两者相比无显著差异;GSDH5种子中硫氨基酸占种子干样的比例为1.35%,占种子蛋白的比例为3.14%,与转基因受体品种‘东农50’相比,占比显著升高,分别增加了11%和16%。(5)转基因大豆GSDH5植株与受体品种‘东农50’在单株荚数、百粒重、株高、结荚习性、花色、叶形等方面均无显著差异,证明HSSP基因的插入对大豆植株的生长发育无不良影响。研究认为,转基因大豆GSDH5材料具备进一步培育成高含硫氨基酸大豆新品种的潜力。  相似文献   
14.
Extremophiles - Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural...  相似文献   
15.
The ethanol is a widely consumed as sedative-hypnotic drug throughout the world. In this study, the effects of ethanol were investigated on carbonic anhydrase (CA) enzyme activities both in vitro in human erythrocyte and in vivo in Sprague-Dawley rat erythrocyte. For in vitro study, the human carbonic anhydrase-I (HCA-I) and -II (HCA-II) are purified by Sepharose 4B–L-tyrosine-sulphanilamide affinity chromatography. In vivo CA enzyme activity was determined colorimetrically by using CO2-hydration method of Wilbur and Anderson. Rat blood samples were taken from each rat before and after the ethanol administration at different times (1 h, 3 h, and 5 h). Rat erythrocyte CA activity was significantly inhibited by pharmacological dosage of the ethanol (2 mL.kg? 1) for up to 3 h (p < 0.001) following intraperitoneally administration. The ethanol showed in vitro inhibitory effects on HCA-I and HCA-II hydratase activity, determined by colorimetrically using the CO2-hydratase method. The inhibitor concentrations causing up to 50% inhibition (IC50) were 2.09 M for HCA-I (r2:0.9273) and 1.83 M for HCA-II (r2:9749). In conclusion, it was demonstrated that carbonic anhydrase enzyme in erythrocytes was significantly inhibited by the ethanol both in in vitro and in vivo.  相似文献   
16.
The inhibition of two human carbonic anhydrase (HCA, EC 4.2.1.1) isozymes, the cytosolic HCA I and II, with heavy metal salts of Pb(II), Co(II) and Hg(II)has been investigated. Human erythrocyte CA-I isozyme was purified with a specific activity of 920 EUmg? 1 and a yield of 30% and CA-II isozyme was purified with a specific activity of 8000 EUmg? 1 and a yield of 40% using Sepharose-4B-L tyrosine-sulfanilamide affinity gel chromatography. The overall purification was approximately 104-fold for HCA-I and 900-fold for HCA-II. The inhibitory effects of different heavy metals (lead, cobalt and mercury) on CA activity were determined at low concentrations using the esterase method under in vitro conditions. Ki values for these metals were calculated from Lineweaver-Burk graphs as 1.0, 3.22 and 1.45 mM for HCA-I and 0.059, 1.382 and 0.32 mM for HCA-II respectively. Lead was a noncompetitive inhibitor for HCA-I and competitive for HCA-II, cobalt was competitive for HCA-I and noncompetitive for HCA-II and mercury was uncompetitive for both HCA-I and HCA-II. Lead was the best inhibitor for both HCA-I and HCA-II.  相似文献   
17.
A new series of 6, 7-dihydroxy-3-(methylphenyl) chromenones, including three new derivatives, i.e. 6,7-dihydroxy-3-(2-methylphenyl)-2H-chromen-2-one (OPC); 6,7-dihydroxy-3-(3-methylphenyl)-2H-chromen-2-one (MPC); 6,7-dihydroxy-3-(4-methylphenyl)-2H-chromen-2-one (PPC) and one previously described, namely 6,7-dihydroxy-3-phenyl-2H-chromen-2-one (DPC), were synthesized. These compounds were investigated as inhibitors of human carbonic anhydrase I (hCA-I) and human carbonic anhydrase II (hCA-II) which had been purified from human erythrocytes on an affinity gel comprised of L-tyrosine-sulfonamide-Sepharose 4B.  相似文献   
18.
19.
Here we report the association of the rs694539 variant of nicotinamide-N-methyltransferase gene with bipolar disorder in a case–control study of 95 bipolar disorder patients and 201 healthy controls (χ2 = 13.382, P = 0.001). With the polymerase chain reaction restriction fragment length polymorphism method we developed we were able to show the association for the first time. This new finding may provide evidence to understand the mechanism of the disease.  相似文献   
20.
Choline acetyltransferase (ChAT) is the key enzyme for acetylcholine (ACh) synthesis and constitutes a reliable marker for the integrity of cholinergic neurons. Cortical ChAT activity is decreased in the brain of patients suffering from Alzheimer's and Parkinson's diseases. The standard method used to measure the activity of ChAT enzyme relies on a very sensitive radiometric assay, but can only be performed on post‐mortem tissue samples. Here, we demonstrate the possibility to monitor ACh synthesis in rat brain homogenates in real time using NMR spectroscopy. First, the experimental conditions of the radiometric assay were carefully adjusted to produce maximum ACh levels. This was important for translating the assay to NMR, which has a low intrinsic sensitivity. We then used 15N‐choline and a pulse sequence designed to filter proton polarization by nitrogen coupling before 1H‐NMR detection. ACh signal was resolved from choline signal and therefore it was possible to monitor ChAT‐mediated ACh synthesis selectively over time. We propose that the present approach using a labeled precursor to monitor the enzymatic synthesis of ACh in rat brain homogenates through real‐time NMR represents a useful tool to detect neurotransmitter synthesis. This method may be adapted to assess the state of the cholinergic system in the brain in vivo in a non‐invasive manner using NMR spectroscopic techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号